Convert the given equation both to cylindrical and to spherical coordinates. x^2+y^2=2 x

Convert the given equation both to cylindrical and to spherical coordinates. x^2+y^2=2 x

Convert the given equation both to cylindrical and to spherical coordinates. z=x^2-y^2Подробнее

Convert the given equation both to cylindrical and to spherical coordinates. z=x^2-y^2

Volume common to Sphere x²+y²+z² = a² and the Cylinder x²+y² = ay. Volume by Double IntegralsПодробнее

Volume common to Sphere x²+y²+z² = a² and the Cylinder x²+y² = ay. Volume by Double Integrals

Triple Integration | Lecture 28 | Finding Volume using Cylindrical CoordinatesПодробнее

Triple Integration | Lecture 28 | Finding Volume using Cylindrical Coordinates

Spherical IntegrationПодробнее

Spherical Integration

Convert a Rectangular Equation to a Spherical Equation x^2+y^2-z^2=0Подробнее

Convert a Rectangular Equation to a Spherical Equation x^2+y^2-z^2=0

Convert a Rectangular Equation to a Spherical Equation x^2+y^2+z^2-9z=0Подробнее

Convert a Rectangular Equation to a Spherical Equation x^2+y^2+z^2-9z=0

15.8.4: Setting Up an Integral That Gives the Volume Inside a Sphere and Below a Half-ConeПодробнее

15.8.4: Setting Up an Integral That Gives the Volume Inside a Sphere and Below a Half-Cone

Calculus 3 Lecture 14.7: TRIPLE Integrals Over Regions with CYLINDRICAL or SPHERICAL Coord.Подробнее

Calculus 3 Lecture 14.7: TRIPLE Integrals Over Regions with CYLINDRICAL or SPHERICAL Coord.

Converting from Cartesian (x,y,z) to Spherical (ρ,θ,φ)Подробнее

Converting from Cartesian (x,y,z) to Spherical (ρ,θ,φ)

События