Week 1 Lecture 7 | Bias - Variance

Week 1 Lecture 7 | Bias - Variance

Week 7 Lecture 7 | Ensemble Methods - BoostingПодробнее

Week 7 Lecture 7 | Ensemble Methods - Boosting

Week 7 Lecture 6 | Ensemble Methods - Bagging, Committee Machines and StackingПодробнее

Week 7 Lecture 6 | Ensemble Methods - Bagging, Committee Machines and Stacking

Week 7 Lecture 5 | Minimum Description Length and Exploratory AnalysisПодробнее

Week 7 Lecture 5 | Minimum Description Length and Exploratory Analysis

Week 7 Lecture 4 | The ROC CurveПодробнее

Week 7 Lecture 4 | The ROC Curve

Week 7 Lecture 3 | 2 Class Evaluation MeasuresПодробнее

Week 7 Lecture 3 | 2 Class Evaluation Measures

Week 7 Lecture 2 | Evaluation and Evaluation Measures II - Bootstrapping and Cross ValidationПодробнее

Week 7 Lecture 2 | Evaluation and Evaluation Measures II - Bootstrapping and Cross Validation

Week 7 Lecture 1 | Evaluation and Evaluation Measures IПодробнее

Week 7 Lecture 1 | Evaluation and Evaluation Measures I

Week 6 Lecture 7 | Decision Trees - Missing Values, Imputation, Surrogate SplitsПодробнее

Week 6 Lecture 7 | Decision Trees - Missing Values, Imputation, Surrogate Splits

Week 5 Lecture 7 | Parameter Estimation IIIПодробнее

Week 5 Lecture 7 | Parameter Estimation III

Week 2 Lecture 7 | Partial Least SquaresПодробнее

Week 2 Lecture 7 | Partial Least Squares

NPTEL Deep Learning Week 7 Tutorial ( Bias, Variance, Regularization, Dropout)Подробнее

NPTEL Deep Learning Week 7 Tutorial ( Bias, Variance, Regularization, Dropout)

Week 2 Lecture 7 - Bias - VarianceПодробнее

Week 2 Lecture 7 - Bias - Variance

Новости