SICKLE: A Multi-Sensor Satellite Imagery Dataset Annotated With Multiple Key Cropping Parameters

SICKLE Dataset | WACV 2024 | Oral PresentationПодробнее

256 EO Applications-2, Using multi source satellite image series for a data informed crop yieldПодробнее

Multi-Sensor Satellite Imagery Analysis for Urban Sprawl - Markham, OntarioПодробнее

Crop Classification with Multi-Temporal Satellite Image DataПодробнее

Extended Agriculture-Vision: An Extension of a Large Image Dataset for Agricultural Pattern AnalysisПодробнее

Farming in Three DimensionsПодробнее

Remote Sensing for Agriculture and Food Security 2Подробнее

Poster 4: Phenology Alignment Network for Cross-Regional Time Series Crop Classification (Wuhan U)Подробнее

How it Works: Agricultural Monitoring with SatellitesПодробнее

Satellites for Agriculture: Application of Artificial Intelligence for Satellite Imagery in FarmingПодробнее

EOSDA Crop Monitoring - precision agriculture powered by satellite-based remote sensingПодробнее

Deep learning Workshop for Satellite Imagery - Data Processing (Part 1/3)Подробнее

ID 58 Satellite Image Quality Assessment Using Deep LearningПодробнее

An Integrated Multi-Sensor System for the in-Line Monitoring of Material StreamsПодробнее

Combining satellite data, low-cost and reference sensors using AIПодробнее

Deep Learning tools in Building Detection from Drone & Satellite imageryПодробнее

How to leverage satellite imagery for precision agricultureПодробнее

Webinar - Monitoring croplands using remote sensing, ground data & machine learning algorithmsПодробнее

automated anomaly detection in satellite imageryПодробнее

Rescaling Satellite Images for Classification Input (C10 - V3)Подробнее
