Numerical Methods: Newton-Raphson for xsinx + cosx = 0 Near π

Numerical Methods: Newton-Raphson for xsinx + cosx = 0 Near π

Trapezoidal Rule in Numerical Methods | ∫ x / (1 + x²) dx | VTU Math | Module 4 ExplainedПодробнее

Trapezoidal Rule in Numerical Methods | ∫ x / (1 + x²) dx | VTU Math | Module 4 Explained

Simpson’s 3/8 Rule | ∫(1 / (1 + x²)) dx from 0 to 1 | 6 Subintervals | VTU Maths 2 | Module 4Подробнее

Simpson’s 3/8 Rule | ∫(1 / (1 + x²)) dx from 0 to 1 | 6 Subintervals | VTU Maths 2 | Module 4

NUMERICAL METHODS to find real root of xsinx+cosx=0 Near piПодробнее

NUMERICAL METHODS to find real root of xsinx+cosx=0 Near pi

Numerical Methods: Newton-Raphson for cosx = x·e^x | VTU Module 4Подробнее

Numerical Methods: Newton-Raphson for cosx = x·e^x | VTU Module 4

Regula Falsi Method | Solve x·eˣ = 3 | 3 Iterations with Calculator TrickПодробнее

Regula Falsi Method | Solve x·eˣ = 3 | 3 Iterations with Calculator Trick

Newton Raphson Method | Numerical MethodsПодробнее

Newton Raphson Method | Numerical Methods

Regula Falsi Method | Find 4th Root of 12 | Accurate to 3 Decimal PlacesПодробнее

Regula Falsi Method | Find 4th Root of 12 | Accurate to 3 Decimal Places

Regula Falsi Method | Solve x log x = 1.2 | Real Root to 4 Decimal PlacesПодробнее

Regula Falsi Method | Solve x log x = 1.2 | Real Root to 4 Decimal Places

Solve xsinx+cosx=0, by Newton Raphson Method, correct to four decimal places.Подробнее

Solve xsinx+cosx=0, by Newton Raphson Method, correct to four decimal places.

Interpolation Formula: Newton divided difference interpolation (Part 1 of 4)Подробнее

Interpolation Formula: Newton divided difference interpolation (Part 1 of 4)

Interpolation Formula: Newton divided difference interpolation (Part 2 of 4)Подробнее

Interpolation Formula: Newton divided difference interpolation (Part 2 of 4)

Interpolation Formula: Newton Backward & Forward Interpolation Method (Part 9 of 9)Подробнее

Interpolation Formula: Newton Backward & Forward Interpolation Method (Part 9 of 9)

Interpolation Formula: Newton Backward & Forward Interpolation Method (Part 3 of 9)Подробнее

Interpolation Formula: Newton Backward & Forward Interpolation Method (Part 3 of 9)

Simpson’s 1/3rd Rule | Numerical Integration | Find π from ∫1/(1 + x²) dxПодробнее

Simpson’s 1/3rd Rule | Numerical Integration | Find π from ∫1/(1 + x²) dx

Module-1: Numerical Methods - Newton Raphson MethodПодробнее

Module-1: Numerical Methods - Newton Raphson Method

#16 || Problem# 7 || Newton Raphson method || Root that lies near 𝒙=𝟒.𝟓 of the equation 𝒕𝒂𝒏𝒙=𝒙||Подробнее

#16 || Problem# 7 || Newton Raphson method || Root that lies near 𝒙=𝟒.𝟓 of the equation 𝒕𝒂𝒏𝒙=𝒙||

#15 || Problem#6 || Newton Raphson || Approximate root of the equation 𝒙 log 10⁡𝒙=𝟏. 𝟐 || 18MAT21||Подробнее

#15 || Problem#6 || Newton Raphson || Approximate root of the equation 𝒙 log 10⁡𝒙=𝟏. 𝟐 || 18MAT21||

Newton Raphson Method of Numerical Methods | using calculator tricksПодробнее

Newton Raphson Method of Numerical Methods | using calculator tricks

#12 || Problem#3|| Newton Raphson Method || Find real root of the equation 𝒙𝒆^𝒙−𝟐=𝟎 || 18MAT21||Подробнее

#12 || Problem#3|| Newton Raphson Method || Find real root of the equation 𝒙𝒆^𝒙−𝟐=𝟎 || 18MAT21||

События