Lecture 4a - The 3 Fundamental Theories of Machine Learning

Lecture 4a - The 3 Fundamental Theories of Machine Learning

Regression for Machine Learning and Data Science - 2019Подробнее

Regression for Machine Learning and Data Science - 2019

Lecture 15 - K Nearest Neighbors ClassifierПодробнее

Lecture 15 - K Nearest Neighbors Classifier

Lecture 14 Bayes' Classifier How it worksПодробнее

Lecture 14 Bayes' Classifier How it works

Lecture 13a - More on Classification with ExampleПодробнее

Lecture 13a - More on Classification with Example

Lecture 13 - Introduction to ClassificationПодробнее

Lecture 13 - Introduction to Classification

Lecture 12 - Bias Variance Trade offПодробнее

Lecture 12 - Bias Variance Trade off

Lecture 11 What is Probability DensityПодробнее

Lecture 11 What is Probability Density

Lecture 10a - Prior and Posterior ProbabilityПодробнее

Lecture 10a - Prior and Posterior Probability

Lecture 10 - Application of Bayes' TheoremПодробнее

Lecture 10 - Application of Bayes' Theorem

Lecture 9a - Bayes' TheoremПодробнее

Lecture 9a - Bayes' Theorem

Lecture 9 - Laws of ProbabilityПодробнее

Lecture 9 - Laws of Probability

Lecture 8 - Introduction to Probability TheoryПодробнее

Lecture 8 - Introduction to Probability Theory

Lecture 7a - Underfitting and Overfitting with Python DemoПодробнее

Lecture 7a - Underfitting and Overfitting with Python Demo

Lecture 7 - Undefitting and OverfittingПодробнее

Lecture 7 - Undefitting and Overfitting

Lecture 6 - Polynomial Curve FittingПодробнее

Lecture 6 - Polynomial Curve Fitting

Lecture 5 - Equation of a Regression LineПодробнее

Lecture 5 - Equation of a Regression Line

Lecture 4 - Simple Linear Regression ProblemПодробнее

Lecture 4 - Simple Linear Regression Problem

Lecture 3 - Classes of Machine Learning ProblemsПодробнее

Lecture 3 - Classes of Machine Learning Problems

Lecture 2 - Overview of Machine Learning and Some Basic TermsПодробнее

Lecture 2 - Overview of Machine Learning and Some Basic Terms

Популярное