Lec-3: What is Automata in TOC | Theory of Computation

Lec-46: Principal Component Analysis (PCA) Explained | Machine LearningПодробнее

Lec-46: Principal Component Analysis (PCA) Explained | Machine Learning

Lec-41: Numerical Explanation on SVM | How Support Vector Machine Algorithm WorksПодробнее

Lec-41: Numerical Explanation on SVM | How Support Vector Machine Algorithm Works

Lec-40: Support Vector Machines (SVMs) | Machine LearningПодробнее

Lec-40: Support Vector Machines (SVMs) | Machine Learning

Lec-39: Multiple Linear Regression (MLR) | Machine LearningПодробнее

Lec-39: Multiple Linear Regression (MLR) | Machine Learning

Lec-3: Possibility of DFA and Language detection with example in hindi | DFA by EngisolveПодробнее

Lec-3: Possibility of DFA and Language detection with example in hindi | DFA by Engisolve

LEC-3 | TOC |FINITE STATE MACHINE (FSM) DEFINITION | GATE | NET | KVS-PGT | HPSC-PGTПодробнее

LEC-3 | TOC |FINITE STATE MACHINE (FSM) DEFINITION | GATE | NET | KVS-PGT | HPSC-PGT

Lec 3 | Questions of DFA Designing | Theory of Computation (TOC) | RGPV CSE B.Tech 5th Sem 3rd YearПодробнее

Lec 3 | Questions of DFA Designing | Theory of Computation (TOC) | RGPV CSE B.Tech 5th Sem 3rd Year

Lec-1.4: Examples on DFA (Part - 3)Подробнее

Lec-1.4: Examples on DFA (Part - 3)

TAFL Unit :-3 (Lec :18) Chomsky classification of Grammar BCS402 B.Tech AKTU 2nd Year CSE/ITПодробнее

TAFL Unit :-3 (Lec :18) Chomsky classification of Grammar BCS402 B.Tech AKTU 2nd Year CSE/IT

Lec-3 I Part-II UNIT-1 Theory of Automata and Formal Languages I TAFL I GATEWAY CLASSES I AKTUПодробнее

Lec-3 I Part-II UNIT-1 Theory of Automata and Formal Languages I TAFL I GATEWAY CLASSES I AKTU

Lec-3 I Part-1I UNIT-1 Theory of Automata and Formal Languages I TAFL I GATEWAY CLASSES I AKTUПодробнее

Lec-3 I Part-1I UNIT-1 Theory of Automata and Formal Languages I TAFL I GATEWAY CLASSES I AKTU

Lec-20: Mean, Median, Mode with Real Life examples | Machine LearningПодробнее

Lec-20: Mean, Median, Mode with Real Life examples | Machine Learning

Lec-13: K-mean Clustering with Numerical Example | Unsupervised Learning | Machine🖥️ Learning 🙇‍♂️🙇Подробнее

Lec-13: K-mean Clustering with Numerical Example | Unsupervised Learning | Machine🖥️ Learning 🙇‍♂️🙇

Lec-12: Introduction to Ensemble Learning with Real Life Examples | Machine⚙️ LearningПодробнее

Lec-12: Introduction to Ensemble Learning with Real Life Examples | Machine⚙️ Learning

Lec-10: Decision Tree 🌲 ID3 Algorithm with Example & Calculations 🧮Подробнее

Lec-10: Decision Tree 🌲 ID3 Algorithm with Example & Calculations 🧮

Lec-9: Introduction to Decision Tree 🌲 with Real life examplesПодробнее

Lec-9: Introduction to Decision Tree 🌲 with Real life examples

Lec-5: Logistic Regression with Simplest & Easiest Example | Machine LearningПодробнее

Lec-5: Logistic Regression with Simplest & Easiest Example | Machine Learning

Lec-8: Naive Bayes Classification Full Explanation with examples | Supervised LearningПодробнее

Lec-8: Naive Bayes Classification Full Explanation with examples | Supervised Learning

Lec-4: Linear Regression📈 with Real life examples & Calculations | Easiest ExplanationПодробнее

Lec-4: Linear Regression📈 with Real life examples & Calculations | Easiest Explanation

Lec-3: Introduction to Regression with Real Life ExamplesПодробнее

Lec-3: Introduction to Regression with Real Life Examples

Новости