Lec-2: Supervised Learning Algorithms | Machine Learning

All about Perceptron | Deep Learning Lec - 2Подробнее

All about Perceptron | Deep Learning Lec - 2

Numerical-2 on KNN (Part-5) | Regression Type | Supervised Learning | Machine Learning (Lec-9)Подробнее

Numerical-2 on KNN (Part-5) | Regression Type | Supervised Learning | Machine Learning (Lec-9)

Machine Learning [Lec 2] - Linear Regression P1Подробнее

Machine Learning [Lec 2] - Linear Regression P1

Lec-46: Principal Component Analysis (PCA) Explained | Machine LearningПодробнее

Lec-46: Principal Component Analysis (PCA) Explained | Machine Learning

Lec-49: What is Multilayer Perceptron (MLP)? | How It Works in Machine LearningПодробнее

Lec-49: What is Multilayer Perceptron (MLP)? | How It Works in Machine Learning

Lec-48: Understanding Single Layer Perceptron (SLP) with Example | Machine LearningПодробнее

Lec-48: Understanding Single Layer Perceptron (SLP) with Example | Machine Learning

Lec-44: K-Fold Cross Validation in Machine LearningПодробнее

Lec-44: K-Fold Cross Validation in Machine Learning

Lec-41: Numerical Explanation on SVM | How Support Vector Machine Algorithm WorksПодробнее

Lec-41: Numerical Explanation on SVM | How Support Vector Machine Algorithm Works

Lec-40: Support Vector Machines (SVMs) | Machine LearningПодробнее

Lec-40: Support Vector Machines (SVMs) | Machine Learning

Lec-42: Linear Discriminant Analysis (LDA) | Machine LearningПодробнее

Lec-42: Linear Discriminant Analysis (LDA) | Machine Learning

Lec-39: Multiple Linear Regression (MLR) | Machine LearningПодробнее

Lec-39: Multiple Linear Regression (MLR) | Machine Learning

Supervised Learning Lec - 2 | Machine Learning by Devansh RajaniПодробнее

Supervised Learning Lec - 2 | Machine Learning by Devansh Rajani

Supervised Learning Unit - 2 | Lec - 1 | ML by Devansh RajaniПодробнее

Supervised Learning Unit - 2 | Lec - 1 | ML by Devansh Rajani

Lec. 11: Foundations of Artificial Intelligence Using Python | Machine Learning Supervised LearningПодробнее

Lec. 11: Foundations of Artificial Intelligence Using Python | Machine Learning Supervised Learning

Mathematics for Machine Learning | Lec 8 | Linear Algebra | Part IПодробнее

Mathematics for Machine Learning | Lec 8 | Linear Algebra | Part I

Artificial Intelligence and ML |Question Bank|Module-1 & 2|21CS54|VTU syllabus|Lec-39Подробнее

Artificial Intelligence and ML |Question Bank|Module-1 & 2|21CS54|VTU syllabus|Lec-39

Lec-29: Decision Tree 🌳 Example | Calculate Entropy, Information ℹ️ Gain | Supervised LearningПодробнее

Lec-29: Decision Tree 🌳 Example | Calculate Entropy, Information ℹ️ Gain | Supervised Learning

Lec-27: Pearson's Correlation Coefficient | Supervised Learning | Data Science & Machine LearningПодробнее

Lec-27: Pearson's Correlation Coefficient | Supervised Learning | Data Science & Machine Learning

Introduction to machine learning/21CS54 VTU Syllabus/Lec-2/AIML/V-sem/Module 2Подробнее

Introduction to machine learning/21CS54 VTU Syllabus/Lec-2/AIML/V-sem/Module 2

Lec-26: Cross Validation in Machine Learning with ExamplesПодробнее

Lec-26: Cross Validation in Machine Learning with Examples

Популярное