JEE MAIN PYQ 2025 ( 2 April- shift 2 ) || Integration PYQ 2025 || IIT JEE Class12 MATHS #JEE2025

Q) The number of solutions sin^7 x+cos^7 x=1, x∈[0, 4𝜋] is equal to jee main pyq 2021#jee2026 #mПодробнее

Q) The number of solutions sin^7 x+cos^7 x=1, x∈[0, 4𝜋] is equal to jee main pyq 2021#jee2026 #m

Let 𝐴={1,2,3,……,10} and 𝐵={𝑚/𝑛:𝑚,𝑛∈𝐴,𝑚𝑛 and " gcd(𝑚,𝑛)=1}Then n(B) is equal toJEE MAINSПодробнее

Let 𝐴={1,2,3,……,10} and 𝐵={𝑚/𝑛:𝑚,𝑛∈𝐴,𝑚𝑛 and ' gcd(𝑚,𝑛)=1}Then n(B) is equal toJEE MAINS

Q) The number of solutions equation 2𝑥+3tan𝑥=𝜋, 𝑥∈[−2𝜋,2𝜋]−{±𝜋/2,±3𝜋/2} jee main pyq 2025Подробнее

Q) The number of solutions equation 2𝑥+3tan𝑥=𝜋, 𝑥∈[−2𝜋,2𝜋]−{±𝜋/2,±3𝜋/2} jee main pyq 2025

The number of solutions of the equation sin x = 𝑐𝑜s^2 𝑥 in the interval (0,10) is jee main pПодробнее

The number of solutions of the equation sin x = 𝑐𝑜s^2 𝑥 in the interval (0,10) is jee main p

Q) If 𝜃∈[−2𝜋,2𝜋], then the number of solutions of 2√2 cos^2 𝜃+(2−√6)cos𝜃−√3=0, is equalПодробнее

Q) If 𝜃∈[−2𝜋,2𝜋], then the number of solutions of 2√2 cos^2 𝜃+(2−√6)cos𝜃−√3=0, is equal

Q) The number of solutions of the equationcos2𝜃cos 𝜃/2+cos 5𝜃/2=2cos^3 5𝜃/2 " in " [−𝜋/2,𝜋/2]" is "Подробнее

Q) The number of solutions of the equationcos2𝜃cos 𝜃/2+cos 5𝜃/2=2cos^3 5𝜃/2 ' in ' [−𝜋/2,𝜋/2]' is '

Q) The value of cot^(−1) (√(1+tan^2 (2)−1)/(tan(2))) −cot^(−1) (√(1+tan^2 (1/2)+1)/tan(1/2) )Подробнее

Q) The value of cot^(−1) (√(1+tan^2 (2)−1)/(tan(2))) −cot^(−1) (√(1+tan^2 (1/2)+1)/tan(1/2) )

Q) 𝑦(𝑥)= | sin𝑥 cos𝑥 sin𝑥+cos𝑥+1 27 28 27 1 1 1 |,𝑥∈ℝ then (𝑑^2 𝑦)/(𝑑𝑥^2 )+𝑦 is equal toПодробнее

Q) 𝑦(𝑥)= | sin𝑥 cos𝑥 sin𝑥+cos𝑥+1 27 28 27 1 1 1 |,𝑥∈ℝ then (𝑑^2 𝑦)/(𝑑𝑥^2 )+𝑦 is equal to

Q) The sum of all values of 𝜃∈[0,2𝜋] satisfying 2sin^2 𝜃=cos2𝜃 and 2cos^2 𝜃=3sin𝜃 is JEE MAINS 2025Подробнее

Q) The sum of all values of 𝜃∈[0,2𝜋] satisfying 2sin^2 𝜃=cos2𝜃 and 2cos^2 𝜃=3sin𝜃 is JEE MAINS 2025

Q) If 𝜃∈[−7𝜋/6,4𝜋/3], then the number of solutions of √3 cosec^2 𝜃−2(√3−1)cosec𝜃−4=0,Подробнее

Q) If 𝜃∈[−7𝜋/6,4𝜋/3], then the number of solutions of √3 cosec^2 𝜃−2(√3−1)cosec𝜃−4=0,

Q) The number of solutions of the equation 2𝑥+3tan𝑥=𝜋, 𝑥∈[−2𝜋,2𝜋]−{±𝜋/2,±3𝜋/2} is JEE MAINS 2025Подробнее

Q) The number of solutions of the equation 2𝑥+3tan𝑥=𝜋, 𝑥∈[−2𝜋,2𝜋]−{±𝜋/2,±3𝜋/2} is JEE MAINS 2025

Q) The number of solutions of equation (4−√3)sin𝑥 −2√3 cos^2 𝑥=−4/(1+√3),𝑥∈[−2𝜋,5𝜋/2] isПодробнее

Q) The number of solutions of equation (4−√3)sin𝑥 −2√3 cos^2 𝑥=−4/(1+√3),𝑥∈[−2𝜋,5𝜋/2] is

Let A={𝑥∈(0,𝜋)−{𝜋/2}:log_((2/𝜋) ) |sin𝑥|+log(2/𝜋)|cos𝑥|=2} ,𝐵={𝑥≥0:√𝑥(√𝑥−4)−3|√𝑥−2|+6=0}. Then 𝑛(𝐴∪𝐵Подробнее

Let A={𝑥∈(0,𝜋)−{𝜋/2}:log_((2/𝜋) ) |sin𝑥|+log(2/𝜋)|cos𝑥|=2} ,𝐵={𝑥≥0:√𝑥(√𝑥−4)−3|√𝑥−2|+6=0}. Then 𝑛(𝐴∪𝐵

Q) The number of solutions of the equationcos2𝜃cos 𝜃/2+cos 5𝜃/2=2cos^3 5𝜃/2 " in " [−𝜋/2,𝜋/2]" is "Подробнее

Q) The number of solutions of the equationcos2𝜃cos 𝜃/2+cos 5𝜃/2=2cos^3 5𝜃/2 ' in ' [−𝜋/2,𝜋/2]' is '

Let the function f(x) = x³/3 + 3/x + 3, x ≠ 0 be strictly increasing in (−∞, α₁)...| Doubtify JEEПодробнее

Let the function f(x) = x³/3 + 3/x + 3, x ≠ 0 be strictly increasing in (−∞, α₁)...| Doubtify JEE

Let the function f(x) = x³/3 + 3/x + 3, x ≠ 0 be strictly increasing in (−∞, α₁)...| Doubtify JEEПодробнее

Let the function f(x) = x³/3 + 3/x + 3, x ≠ 0 be strictly increasing in (−∞, α₁)...| Doubtify JEE

If the domain of the function 𝑓(𝑥)=log_7 (1−log_4 (𝑥^2−9𝑥+18)) is (𝛼,𝛽)∪(𝛾,𝛿), then 𝛼+𝛽+𝛾+𝛿 is eq...Подробнее

If the domain of the function 𝑓(𝑥)=log_7 (1−log_4 (𝑥^2−9𝑥+18)) is (𝛼,𝛽)∪(𝛾,𝛿), then 𝛼+𝛽+𝛾+𝛿 is eq...

Q) If the range of the function 𝑓(𝑥)=(5−𝑥)/(𝑥^2−3𝑥+2),𝑥≠1,2, is (−∞,𝛼]∪[𝛽,∞), then 𝛼^2+𝛽^2Подробнее

Q) If the range of the function 𝑓(𝑥)=(5−𝑥)/(𝑥^2−3𝑥+2),𝑥≠1,2, is (−∞,𝛼]∪[𝛽,∞), then 𝛼^2+𝛽^2

Q) If I= integration 0 to (𝜋/2) (sin^(3/2) x)/(sin^(3/2) x+ cos^(3/2) x) dx sin𝑥cossin^4 𝑥+cos^4Подробнее

Q) If I= integration 0 to (𝜋/2) (sin^(3/2) x)/(sin^(3/2) x+ cos^(3/2) x) dx sin𝑥cossin^4 𝑥+cos^4

Let f(x) = x − 1 and g(x) = eˣ for x ∈ R. If dy/dx = (e⁻²√ˣ g( f( f(x))) − y/√x)...| Doubtify JEEПодробнее

Let f(x) = x − 1 and g(x) = eˣ for x ∈ R. If dy/dx = (e⁻²√ˣ g( f( f(x))) − y/√x)...| Doubtify JEE

Актуальное