Faster and Cheaper Offline Batch Inference with Ray

Faster and Cheaper Offline Batch Inference with Ray

How Roblox Scaled Machine Learning by Leveraging Ray for Efficient Batch Inference | Ray Summit 2024Подробнее

How Roblox Scaled Machine Learning by Leveraging Ray for Efficient Batch Inference | Ray Summit 2024

Enabling Cost-Efficient LLM Serving with Ray ServeПодробнее

Enabling Cost-Efficient LLM Serving with Ray Serve

Anyscale's Ray Data: Revolutionizing Batch Inference | Ray Summit 2024Подробнее

Anyscale's Ray Data: Revolutionizing Batch Inference | Ray Summit 2024

offline inference of training dataПодробнее

offline inference of training data

Scaling Training and Batch Inference- A Deep Dive into AIR's Data Processing EngineПодробнее

Scaling Training and Batch Inference- A Deep Dive into AIR's Data Processing Engine

Intelligence Engineering through Batch InferenceПодробнее

Intelligence Engineering through Batch Inference

Scaling LLM Batch Inference: Ray Data & vLLM for High ThroughputПодробнее

Scaling LLM Batch Inference: Ray Data & vLLM for High Throughput

Offline LLM Inference with the Bedrock Batch APIПодробнее

Offline LLM Inference with the Bedrock Batch API

40 Model Batch InferenceПодробнее

40 Model Batch Inference

[Ray Meetup] Ray + vLLM in Action: Lessons from Pinterest and Large Scale Distributed InferenceПодробнее

[Ray Meetup] Ray + vLLM in Action: Lessons from Pinterest and Large Scale Distributed Inference

Efficient Batch Inference on Mosaic AI Model ServingПодробнее

Efficient Batch Inference on Mosaic AI Model Serving

How to do Batch Inference using AML ParallelRunStepПодробнее

How to do Batch Inference using AML ParallelRunStep

Ray Data Streaming for Large-Scale ML Training and InferenceПодробнее

Ray Data Streaming for Large-Scale ML Training and Inference

Scaling Generative AI: Batch Inference Strategies for Foundation ModelsПодробнее

Scaling Generative AI: Batch Inference Strategies for Foundation Models

Ray Aviary: Open-Source Multi-LLM ServingПодробнее

Ray Aviary: Open-Source Multi-LLM Serving

События