Example 1.006 TOC GATE CS 2006 (DFA minimum states)

Example 1.006 TOC GATE CS 2006 (DFA minimum states)

GATE CS 2006, Que 29, GATE CS PYQs, GATE CS Solutions, TOC, Regular LanguagesПодробнее

GATE CS 2006, Que 29, GATE CS PYQs, GATE CS Solutions, TOC, Regular Languages

GATE CSE 2006Подробнее

GATE CSE 2006

Example 1.004 TOC GATE CS 2003 (Toggle NFA states)Подробнее

Example 1.004 TOC GATE CS 2003 (Toggle NFA states)

Example 1.010 TOC GATE CS 2010 (DFA missing arcs)Подробнее

Example 1.010 TOC GATE CS 2010 (DFA missing arcs)

Example 1.007 TOC GATE CS 2008 (product automaton)Подробнее

Example 1.007 TOC GATE CS 2008 (product automaton)

Deterministic Finite Automata (Example 1)Подробнее

Deterministic Finite Automata (Example 1)

GATE CSE 2006Подробнее

GATE CSE 2006

Example 1.008 TOC GATE CS 2008 (regular set)Подробнее

Example 1.008 TOC GATE CS 2008 (regular set)

GATE CS 2023 Solutions | Question Wise Detailed Explaination | TOC Minimum No. of States in DFAПодробнее

GATE CS 2023 Solutions | Question Wise Detailed Explaination | TOC Minimum No. of States in DFA

GATE CS 2012,Q46:Consider the set of strings on {0,1} in which, every substring of 3 symbols has atПодробнее

GATE CS 2012,Q46:Consider the set of strings on {0,1} in which, every substring of 3 symbols has at

32 Theory Of Computation | GATE 2007 A minimum state deterministic finite automaton accepting theПодробнее

32 Theory Of Computation | GATE 2007 A minimum state deterministic finite automaton accepting the

GATE CS 2012 | Que 46 | GATE CS PYQs | GATE CS MCQs | Theory of Computation | Finite AutomataПодробнее

GATE CS 2012 | Que 46 | GATE CS PYQs | GATE CS MCQs | Theory of Computation | Finite Automata

Example 1.009 TOC GATE CS 2010 (NFA substring)Подробнее

Example 1.009 TOC GATE CS 2010 (NFA substring)

GATE CSE 2016 SET 2Подробнее

GATE CSE 2016 SET 2

LEC 11 | Regular language to DFA part 1 | LEC 11 | TOC | GATE CS 2022 AND 2023 | Ankush SirПодробнее

LEC 11 | Regular language to DFA part 1 | LEC 11 | TOC | GATE CS 2022 AND 2023 | Ankush Sir

34 Theory Of Computation | Gate 2009 The above DFA accepts the set of all strings over {0,1} thatПодробнее

34 Theory Of Computation | Gate 2009 The above DFA accepts the set of all strings over {0,1} that

Example 1.002 TOC GATE CS 2003 (concatenation and group theory)Подробнее

Example 1.002 TOC GATE CS 2003 (concatenation and group theory)

Популярное