Example 1.003 TOC GATE CS 2003 (DFA and 7 bit strings)

Example 1.003 TOC GATE CS 2003 (DFA and 7 bit strings)

GATE CSE 2003Подробнее

GATE CSE 2003

Example 1.002 TOC GATE CS 2003 (concatenation and group theory)Подробнее

Example 1.002 TOC GATE CS 2003 (concatenation and group theory)

GATE CSE 2003Подробнее

GATE CSE 2003

Example 1.001 TOC GATE CS 2003 (same regular expression)Подробнее

Example 1.001 TOC GATE CS 2003 (same regular expression)

GATE 2003 Question based on DFAПодробнее

GATE 2003 Question based on DFA

Example 1.004 TOC GATE CS 2003 (Toggle NFA states)Подробнее

Example 1.004 TOC GATE CS 2003 (Toggle NFA states)

GATE CSE 2003Подробнее

GATE CSE 2003

GATE CSE 1998Подробнее

GATE CSE 1998

GATE CSE 2006Подробнее

GATE CSE 2006

GATE CSE 2003Подробнее

GATE CSE 2003

GATE CSE 2003Подробнее

GATE CSE 2003

DFA Examples | Even 0s, Contains 'ab', Binary ÷ 3#dfa #toc#computerscience #ugcnetcs#gate#dfaexampleПодробнее

DFA Examples | Even 0s, Contains 'ab', Binary ÷ 3#dfa #toc#computerscience #ugcnetcs#gate#dfaexample

Data Structure Example 1.002 GATE CS 2004 (level order traversal)Подробнее

Data Structure Example 1.002 GATE CS 2004 (level order traversal)

GATE CS 2006, Que 29, GATE CS PYQs, GATE CS Solutions, TOC, Regular LanguagesПодробнее

GATE CS 2006, Que 29, GATE CS PYQs, GATE CS Solutions, TOC, Regular Languages

GATE CS 2012 | Que 46 | GATE CS PYQs | GATE CS MCQs | Theory of Computation | Finite AutomataПодробнее

GATE CS 2012 | Que 46 | GATE CS PYQs | GATE CS MCQs | Theory of Computation | Finite Automata

Example 1.007 TOC GATE CS 2008 (product automaton)Подробнее

Example 1.007 TOC GATE CS 2008 (product automaton)

GATE CSE 2003Подробнее

GATE CSE 2003

ISRO 2014 | TOC | DFA | NO. OF STRINGS | ISRO TEST SERIES | SOLUTIONS ADDA | EXPLAINED BY ISRO AIR-1Подробнее

ISRO 2014 | TOC | DFA | NO. OF STRINGS | ISRO TEST SERIES | SOLUTIONS ADDA | EXPLAINED BY ISRO AIR-1

DFA to accept string of length exactly n | Theory of computation | Computer scienceПодробнее

DFA to accept string of length exactly n | Theory of computation | Computer science

События