Derandomization to Boolean Circuit Lower Bounds

Derandomization to Boolean Circuit Lower Bounds

A Unified Approach to Lower Bounds and DerandomizationПодробнее

A Unified Approach to Lower Bounds and Derandomization

Oliver Korten: The weak pigeonhole principle and the complexity of explicit constructionsПодробнее

Oliver Korten: The weak pigeonhole principle and the complexity of explicit constructions

Almost-Everywhere Circuit Lower Bounds from Non-Trivial DerandomizationПодробнее

Almost-Everywhere Circuit Lower Bounds from Non-Trivial Derandomization

Session 10B - Strong Average-Case Circuit Lower Bounds from Non-trivial DerandomizationПодробнее

Session 10B - Strong Average-Case Circuit Lower Bounds from Non-trivial Derandomization

Strong Average-Case Circuit Lower Bounds from Non-trivial Derandomization - Lijie ChenПодробнее

Strong Average-Case Circuit Lower Bounds from Non-trivial Derandomization - Lijie Chen

An Overview of Quantified DerandomizationПодробнее

An Overview of Quantified Derandomization

Derandomization from Circuit Lower Bounds IIПодробнее

Derandomization from Circuit Lower Bounds II

Derandomization from Circuit Lower Bounds IПодробнее

Derandomization from Circuit Lower Bounds I

Pseudorandom Generators from Pseudorandom Multi-Switching LemmasПодробнее

Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas

Derandomization via Robust Algebraic Circuit Lower BoundsПодробнее

Derandomization via Robust Algebraic Circuit Lower Bounds

Актуальное