Build Databricks LLM Application - Discussion

Build Databricks LLM Application - Discussion

Conversation with Meta Founder Mark Zuckerberg and Databricks Co-Founder Ali GhodsiПодробнее

Conversation with Meta Founder Mark Zuckerberg and Databricks Co-Founder Ali Ghodsi

Panel Discussion: Building and Scaling LLM ApplicationsПодробнее

Panel Discussion: Building and Scaling LLM Applications

Building Production RAG Over Complex DocumentsПодробнее

Building Production RAG Over Complex Documents

Prompt Engineering is Dead; Build LLM Applications with DSPy FrameworkПодробнее

Prompt Engineering is Dead; Build LLM Applications with DSPy Framework

Build Retrieval-Augmented Generation (RAG) with Databricks and PineconeПодробнее

Build Retrieval-Augmented Generation (RAG) with Databricks and Pinecone

Building an LLMOps Stack for Large Language Models | LLMsПодробнее

Building an LLMOps Stack for Large Language Models | LLMs

What is Retrieval-Augmented Generation (RAG)?Подробнее

What is Retrieval-Augmented Generation (RAG)?

Evaluating LLM-based ApplicationsПодробнее

Evaluating LLM-based Applications

Unleashing the Magic of Large Language Modeling with Dolly 2.0Подробнее

Unleashing the Magic of Large Language Modeling with Dolly 2.0

Develop Like a Pro in Databricks NotebooksПодробнее

Develop Like a Pro in Databricks Notebooks

Rapidly Scaling Applied AI/ML with Foundational Models and Applying Them to Modern AI/ML Use CasesПодробнее

Rapidly Scaling Applied AI/ML with Foundational Models and Applying Them to Modern AI/ML Use Cases

Sponsored: AWS|Build Generative AI Solution on Open Source Databricks Dolly 2.0 on Amazon SageMakerПодробнее

Sponsored: AWS|Build Generative AI Solution on Open Source Databricks Dolly 2.0 on Amazon SageMaker

LLM in Practice: How to Productionize Your LLMsПодробнее

LLM in Practice: How to Productionize Your LLMs

How to Build LLMs on Your Company’s Data While on a BudgetПодробнее

How to Build LLMs on Your Company’s Data While on a Budget

LLM Module 2 - Embeddings, Vector Databases, and Search | 2.10 Notebook Demo Weaviate (Optional)Подробнее

LLM Module 2 - Embeddings, Vector Databases, and Search | 2.10 Notebook Demo Weaviate (Optional)

Building a Pipeline for State-of-the-Art Natural Language Processing Using Hugging Face ToolsПодробнее

Building a Pipeline for State-of-the-Art Natural Language Processing Using Hugging Face Tools

События